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Project Overview

s Goal: Analyzing distributed
heterogeneous data b
properly utilizing distributed
resources.

s Contributions:

e Distributed decision tree
and Bayesian net learning
algorithms.

e Algorithms for monitoring
distributed data streams.

e Mining NASA/NOAA
AVHRR data and the
virtual observatory data.
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Broader Impacts

sIMining Databases from distributed sites
i Counter-terrorism, bioinformatics

salVionitoring Multiple time critical data streams
Monitoring vehicle d ms in real-time..
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Why Bother?

(Left) Data table at site 1.
(Middle) Data table at site 2.

gRight) Joined data table (based on the shared feature x;) needed
or centralized data mining systemes.

Problems:
e Construction of the join is computationally expensive

e Supporting repeated queries (e.g. for streams) may be too expensive
for the communication-bandwidth.




Example: Network of Virtual
Observatories

The Sloan Digital Sky Survey (SDSS) and the
2MASS All-Sky Survey.

Five filters from SDSS and three filters from
2MASS.

Compute the color ratios.
Features are measured on a logarithmic scale.

Compute pairwise differences of object features,
where the features across surveys




Distributed Inner Product Computation

Site 1 Site2 = Site 1 computes Z,,

o Z,=A1.J,+..+An.J,

® Ji |:| {+1,'1}
« = Site 2 calculates Z,,
e Z,=B1.J;+..+Bn.],
‘ s Compute z,,.z,, for a
few times and take
the average




Heterogeneous DDM and Decision
Trees

s Distributed Randomized Inner Product
(DRIP) computation

= Computing information gain using DRIP.

s Information gain computation can be
posed as an inner product computation
problem.




Relative Error vs. Communication
Cost




Ensemble of Decision Trees &
Homogeneous DDM

s Ensemble-based approaches are popular
for handling homogeneous DDM
applications:

e Bagging
e Arcing
e SEA (Streaming Ensemble Algorithm)

= Problems:
e Large ensembles are difficult to interpret

e Expensive cost of communication




Fourier spectrum of a Decision tree

0 1




Fourier Spectrum of an
Ensemble Classifier

f1(x) \ \ V f (%)

Welghted
Sum

s F(X) = a;f;(X) + a,f, (X) + ... + a,f, (X).
= Alzjl leLIle(X) + ... + a Z]I‘I W]I‘ILIJ]I‘I(X)

jJ is union of all j;




Fourier Spectrum and Decision Trees

Decision Tree

Fourier Spectrum

= Developed efficient algorithms to
e Compute Fourier spectrum of decision tree
e Compute tree from the Fourier spectrum

= Orthogonal Decision trees
e Redundancy free
e Stability analysis




Visualization of Decision Trees

h== Control Factors

FC are color-coded in accordance to the
magnitude.

Brighter spots are more significant coefficients.

On clicking, partition corresponding to the
coefficient is displayed.




Distributed BN Learning

= A Bayesian network (BN) is a
probabilistic graph model.

= TWO problems: Structure and
Parameter learning.




Collective BN Learning

Site A
Central Site




NASA DAO/NOAA AVHRR
Pathfinder Data Model

s Multi-dimensional time series data
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Preprocessing

s Feature Selection
s Data Coordination

s Clustering: Segment grid points into
local homogenous regions.

s Z score normalization
= Quantization




Bayesian network Learning
Results

s Compare the Bayesian Networks:
e B learnt using centralized method.
e B, learnt using collective method.

s Metric: structure error = Number of
missing links + Number of extra
links.




Result

s B — 64 local links and 9 cross links.




Collective Learning Result
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Collective Learning

s With 35% samples, get 7 correct
cross links and 1 extra links.

s With 45% samples, get 8 correct
cross links and 1 extra links.

s With 66% samples, No error.




Web site

= http://www.cs.umbc.edu/~hillol/nasap.html
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Feature Selection

= We used as many features as
possible.

s Features with following
characteristics were dropped.
e Many missing values
o Multi-layer features
o Almost deterministic features

s Used 15 DAO and 7 NOAA features




Feature List

s 1 — Cldfrc, 2 — Evaps, 3 — Olr, 4 — Osr, 5
— Pbl, 6 — preacc, 7 — gint, 8 — radlwg, 9 —
radswg, 10 - t2m, 11 — tg, 12 — ustar, 13
— vintug, 14 - vintvg, 15 - winds, 16 -
asfts, 17 - olrcs_day, 18 - olrcs_night, 19
- olrts_day, 20 - olrts_night, 21 - tcf_day,
22 - tcf_night

s Features 1 - 15 is from NASA DAO and 16
- 22 is from NOAA




Coordination and Clustering

s Coordination: re-grid the NOAA
dataset into DAO format.

= Spatio-temporal Clustering:
Segment datasets into local
homogenous regions in spatial and
temporal domain.

s Each cluster is modeled using a
Bayesian network.




Spatio-temporal Clustering

= Temporal clustering: choose same
month data.

= Spatial clustering

e Average the data from same month. Get
one frame of data in spatial domain.

e Clustering: k-mean, fuzzy c-mean, and
=\




NASA DAO

Subset of the DAO monthly mean data
set: 26 features

Temporal Coverage: March 1980 -
November 1993

Temporal Resolution: All gridded values
are monthly means

Spatial Coverage: Global

Spatial Resolution: 2 degree x 2
degree, grid point data (180 x 91
values per level)




NOAA AVHRR Pathfinder

Product of NOAA AVHRR Pathfinder: 9
features

Temporal Coverage: July 1981 -
November 2000

Temporal Resolution: All gridded values
are monthly means

Spatial Coverage: Global

Spatial Resolution: 1 degree x 1 degree,
grid point data (360 x 180 values per
level, proceeding west to east and then
north to south)




Clustering Results: DAO
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Clustering Results: NOAA

NOAA K-Mean Clustering Resut

Latitude

Latitude

NOAA Fuzzy C-Mean Clustering Resut NOAREM e sl

Latitude

3 -50
0 30 60 9 120 150 180 240 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 0 30 60 9% 120 150 180 240 240 20 300 30 30
Longtude Longitude Longitude
T T
25 3 35 4 1 15 2 25 3 35 1 15 2 25 3 35 4




Preprocessing

Clustering: Chose a cluster that roughly
corresponds to the rectangular region

from (170W, 60S) to (90W, O
Z score normalization
Quantization: Discretize the continuous

feature value into discrete levels based on
its histogram.

After above steps, we get 12 datasets,
one for each month (aggregated over
years 1983-1992).




Quantization Results
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